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Abstract: An arbitrary multiexponential representation of the H-X bond reorientation autocorrelation function
is shown to provide robust predictions of both the fast limit (Sf

2) and generalized (S2) order parameters for
macromolecular NMR relaxation analysis. This representation is applied to the analysis of side-chain dynamics
in Escherichia colithioredoxin to assess correlated torsional fluctuations and the resultant configurational
entropy effects. For both the highS2 phenylalanine and lowS2 leucine side chains, torsional fluctuations in the
major rotamer conformation can predict the observed relaxation data only if main-chain-side-chain torsional
correlations are assumed. Crankshaft-like correlations occur around the side-chainø2 rotation axis and the
parallel main-chain rotation axis. For the sterically hindered buried side chains, torsional fluctuations are predicted
to be attenuated for the main-chain rotation axis oriented gauche to theø2 rotation axis. Weaker main-chain-
side-chain torsional correlations appear to be present for the highly solvated mobile side chains as well. For
these residues, the fast limit order parameter is interpretable in terms of fluctuations within a rotamer state,
while the decrease in the order parameter due to motion near the Larmor frequencies can be used to estimate
the entropy of rotamer exchange.

I. Introduction

As applied to biomacromolecular NMR studies, the hetero-
nuclearT1, T2, and NOE relaxation experiments monitor the
decay of the autocorrelation function of the H-X dipole (and
chemical shift anisotropy) interaction. To date, a large number
of 15N as well as a smaller set of13C CR relaxation studies have
been used to characterize protein main-chain dynamics. Side-
chain dynamics studies have primarily focused on techniques
for analyzing methyl relaxation,1-5 although more recently
techniques have been introduced for monitoring the side-chain
methine and methylene positions as well.4,6 Unfortunately, the
corresponding advance in understanding of the internal molec-
ular dynamics of proteins has been hampered by ambiguities
as to the optimal means of interpreting the experimental
relaxation data. The widely used “model-free” dynamical
formalism of Lipari and Szabo7 interprets macromolecular
internal dynamics in terms of a generalized order parameter,
S2, and an effective time constant of motion,τe, derived from
a single-exponential representation of the internal autocorrelation
function. The generalized order parameterS2 characterizes the
degree to which information on the orientation of an individual
H-X bond vector is lost due to dynamical processes. More

specifically, S2 represents the component of the H-X bond
vector autocorrelation function which is dissipated by global
molecular tumbling, while (1- S2) characterizes the bond vector
orientational disorder arising from internal motion occurring
more rapidly than the molecular tumbling.

Unfortunately, the two-parameter Lipari-Szabo formalism
is unable to adequately fit the experimental data for a significant
fraction of the observed protein relaxation data. This effect is
most marked in the case of side-chain dynamics. For example,
only 12% of all side-chain aliphatic methine and methyleneT1,
T2, and NOE relaxation data ofEscherichia colithioredoxin4

can be fitted by the (S2,τe) formalism withø2 probabilities above
0.05. Three-parameter extensions of the Lipari-Szabo formal-
ism have been introduced so as to accommodate relaxation data
which reflect more extensive motion occurring near the Larmor
frequencies.8,9 In these three-parameter dynamical formalisms,
there is a 1-to-1 mapping between the dynamical variables and
the T1, T2, and NOE relaxation values over a wide range of
experimental data.9 Hence, the ability to fit given experimental
relaxation data does not provide a particularly stringent test for
the validity of the assumptions underlying the dynamical
formalism. Due to such considerations, the physical significance
of the dynamical parameters derived from experimental data
via the Lipari-Szabo type formalisms has been called into
question.10,11

In principle, the order parameter representation underlying
the Lipari-Szabo type formalisms provides a direct physical
interpretation of dynamics, as theS2 values are directly related
to the variance of the probability-weighted spherical harmonics,
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σ2
Y2m, which characterizes the orientational disorder of the H-X

bond vector.12

In section II, it is demonstrated that robust estimates of both
the fast limit Sf

2 and generalizedS2 order parameters can be
derived for any dynamical process in which the corresponding
autocorrelation function can be represented as an arbitrary
multiexponential expansion. As further discussed in that section,
such dynamical representations include the widely observed log-
normal and 1/f distributions which arise from random multi-
plicative processes.13-15 Energy landscape analyses ranging from
glass flow dynamics16 to protein folding17 fall within this class
of dynamical processes. The multiexponential representation
analysis provides for quantitative partitioning of the order
parameter contributions of dynamical processes with time
constants shorter than∼50 ps from those of slower processes
with time constants up to that of the global tumbling of the
macromolecule.

In section III, the experimental fast limit order parameter data
obtained forE. coli thioredoxin is used to interpret protein side-
chain relaxation in terms of dynamical processes which can be
characterized by fluctuations within a localized potential
minimum. Central to this analysis is explicit consideration of
correlated torsional fluctuations.

One view of the basis for the high cooperativity observed in
protein unfolding is that the protein expansion must achieve a
certain threshold to provide the entropic benefit of freeing the
rotation of the buried side chains.18 Clearly, experimental
determination of individual side-chain entropies would provide
a quantitative assessment of this contribution to overall protein
stability as well as for a wide range of protein-ligand
interactions. It has been proposed that order parameters can be
interpreted in terms of local configurational entropy.19 Such
entropy analyses have generally invoked the assumption of
independent bond vector fluctuations.19-23 The assumption of
independent bond vector fluctuations has generally reflected the
fact that the available experimental relaxation data have sampled
only a limited set of atomic positions, most commonly either
main-chain15N resonances or13C methyl resonances, so that a
more realistic dynamical representation cannot be adequately
experimentally constrained.

However, various lines of evidence argue against the general
validity of the assumption of independent bond vector fluctua-
tions for configurational entropy analysis. Particularly germane
to the present analysis, protein leucine methyl relaxation
studies3,4,24 have noted that, for many residues, the order

parameters of the geminal methyl rotation axes are not
equivalent which appears to contradict the assumption of a direct
correspondence between order parameter and local configura-
tional entropy. Also pertinent is the fact that the Câ positions
of half of the aromatic residues ofE. coli thioredoxin have order
parameters lower than those of either the CR or ring carbons,
strongly suggestive of correlated motion.4

Proper accounting for the presence of correlated motion
avoids the systematic overestimate of configurational entropy
which results from the assumption of independent bond vector
fluctuations. Experimental assessment of correlated motion is
particularly of value, as configurational entropy estimates based
on molecular simulations have proven problematic due to
uncertainities regarding how completely the accessible configu-
rational space is sampled.25

Using the extensive13C and15N relaxation data available for
E. coli thioredoxin, it is demonstrated in section III that the
entropic contribution of correlated side-chain motion can be
realistically estimated from experimental data. Dynamical
analysis of the large buried side chains inE. coli thioredoxin,
for which only fast limit motion contributes to the internal1H-
13C bond autocorrelation function, indicates that main-chain-
side-chain torsional fluctuations in the major rotamer state must
be correlated in order to accommodate the observed relaxation
data. Application of this correlation analysis to leucine side-
chain dynamics is particularly germane, as the low order
parameters observed for the methyl rotation axes of these
residues have previously been interpreted in terms of large-
scale internal motions.1,24

In section IV, attention is turned to the physical interpretation
of the decay of the order parameter which occurs in the time
frame bounded by the fast limit processes and the overall
macromolecular tumbling. In section IVA, side-chain rotamer
exchange entropies are shown to be experimentally accessible
from relaxation measurements, even in the absence of indepen-
dent estimates of the populations of the individual rotameric
states. In section IVB, this analysis is applied to the dynamics
of the highly solvated surface side chains ofE. coli thioredoxin.
Combined analysis of the main-chain and side-chain dynamics
for these comparatively unhindered side chains indicates that,
in these cases, the fast limit and generalized order parameters
can be reliably interpreted in terms of fluctuations within a
rotamer state and exchange between rotamer states, respectively.
Furthermore, even in the case of these relatively unhindered
side chains, the assumption of uncorrelated main-chain-side-
chain motion appears to be unjustified.

IIA. Experimental Analysis of the Range of Applicability
of the Lipari -Szabo Formalism for Protein Side-Chain
Dynamics

In the second of their classic papers, Lipari and Szabo provide
estimates of the range of applicability for their model-free
dynamical formalism.26 If the molecular tumbling timeτM is at
least 100-fold longer than the effective internal correlation time
τe and the time constant for the highest sampled Larmor
frequency (i.e., 1/ωH+C) is at least 10-fold longer thanτe, then
τe andS2 values accurate to a few percent can be extracted from
eitherT1 and NOE values at one field orT1 values at two fields.
Note that these conditions correspond toτe < 25 ps at currently
typical magnetic fields. In practice, the (S2,τe) formalism has
routinely been applied far beyond that proposed range of
applicability. For cases in which three or more independent
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experimental relaxation constraints are available, a necessary
condition for the applicability of this two-parameter formalism
is the ability to fit the experimental data to within experimental
uncertainty. Indeed, the inability of the (S2,τe) formalism to fit
a significant fraction of the15N relaxation data of interleukin
1â led Clore, Szabo, and co-workers to propose an extended
three-parameter dynamical formalism.8

Although more extensive dynamical heterogeneity can be
anticipated for the protein side chains, simple two-parameter
dynamical formalisms have been invoked in several recent
studies.6,22,27,28This choice has primarily reflected the fact that
the side-chain relaxation experiments utilizing uniform13C-
enriched samples proposed to date have been limited to two of
the three standardT1, T2, and NOE autocorrelation experiments.
One-bond13C homonuclear scalar and dipolar couplings severely
complicate13C relaxation experiments in uniform13C-labeled
samples.29 Furthermore, dynamical interpretation of relaxation
decay curves for methyl and methylene positions are compli-
cated by1H-13C dipole cross correlation,30,31 although pulse
sequences designed to suppress these effects for methyl groups
have been introduced.1,32 Based on analysis assuming Lipari-
Szabo dynamics, it has been argued that1H-13C dipole cross
correlation yields only modest errors in13C T1 and NOE
experiments.33 This assumption has recently been invoked in
the 13C side-chain relaxation analysis of RNaseT1.28

To circumvent the complications of the13C homonuclear
scalar and dipolar interactions as well as those of1H-13C cross
correlation, Kay and co-workers3,6 have introduced a set of2H
relaxation experiments applicable to random fractionally deu-
terated uniform13C-enriched samples for which cross correlation
and cross relaxation effects are minimal.34 Unfortunately, as only
T1 andT1F experiments are applicable, sampling of the higher
frequencies offered by the13C NOE experiment is lost.

Selective13C enrichment combined with random fractional
2H enrichment and IS spin selection provides a means of
obtaining13C T1, T2, and NOE data at most side-chain positions
free of the complications referred to above.4 Analysis of the
ability of the (S2,τe) formalism to simultaneously fit these
experimental data can serve to determine the outer bounds for
which the two-parameter Lipari-Szabo formalism is applicable
to protein side-chain dynamics. Such an analysis using the13C
relaxation data ofE. coli thioredoxin is simplified by the marked
constancy of the15N and CR T1 and T2 values for the great
majority of the residues in this proteins,4,35 strongly indicative
of isotropic tumbling consistent with the approximately spherical
X-ray structure.36

Optimal fits of S2 and τe for 135 side-chain methine and
methylene resonances ofE. coli thioredoxin were obtained using
the experimental uncertainties for reportedT1, T2, and NOE
values (median experimental uncertainty∼3%).4 In panel A of

Figure 1 are illustrated the individualø2 probabilities greater
than (b) or less than (×) 0.05 as a function of the experimental
NOE and normalizedT1/T2 values. For nuclei exhibiting only
fast limit internal motion, bothT1/T2 and NOE values are
independent ofS2 and depend dynamically only on the molecular
tumbling time. The data for such nuclei lie near the apex of the
apparent triangle (i.e., normalizedT1/T2 ≈ 1 and NOE≈1.2),

(27) Constantine, K. L.; Friedrichs, M. S.; Wittekind, M.; Jamil, H.; Chu,
C. H.; Parker, R. A.; Goldfarb, V.; Mueller, L.; B. T. Farmer, I.Biochemistry
1998, 37, 7965.

(28) Engelke, J.; Ruterjans, H.J. Biomol. NMR1998, 11, 165.
(29) Yamazaki, T.; Muhandiram, R.; Kay, L. E.J. Am. Chem. Soc.1994,

116, 8266.
(30) Fagerness, P. E.; Grant, D. M.; Kuhlmann, K. F.; Mayne, C. L.;

Parry, R. B.J. Chem. Phys.1975, 63, 2524.
(31) Vold, R. R.; Vold, R. L.J. Chem. Phys.1976, 64, 320.
(32) Palmer, A. G.; Wright, P. E.; Rance, M.Chem. Phys. Lett.1991,

185, 41.
(33) Zhu, L.; Kemple, M. D.; Landy, S. B.; Buckley, P.J. Magn. Reson.

1995, 109, 19.
(34) Yang, D.; Kay, L. E.J. Magn. Reson. B1996, 110, 213.
(35) Stone, M. J.; Chandrasekhar, K.; Holmgren, A.; Wright, P. E.;

Dyson, H. J.Biochemistry1993, 32, 426.
(36) Katti, S.; LeMaster, D. M.; Eklund, H.J. Mol. Biol. 1990, 212,

167.

Figure 1. Dynamical analysis of the13C T1, T2, and NOE values from
135 side-chain aliphatic methine and methylene positions ofE. coli
thioredoxin according to the (S2,τe) Lipari-Szabo formalism. Positions
exhibiting apparent chemical exchange broadening4 have been removed,
as have four positions exhibiting NOE values more than 2σ below the
rigid tumbling limit value. The optimal fits were obtained via a grid
search overS2 with a grid spacing of 0.002 and logτe with a grid
spacing of 0.007. Assuming one degree of freedom, theø2 probabilities
greater than (b) and less than (×) 0.05 are plotted in panel A as a
function of T1/T2 and NOE. The experimentalT1/T2 values have been
normalized to the rigid tumbling limit value. The previously reported
experimental uncertainties and global correlation times were assumed.4

Panels B and C illustrate theS2 and logτe values estimated from the
same experimental data by applying the Lipari-Szabo dynamical
formalism to only the (T1,NOE) and the (T1,T2) data.
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and as expected all are well fitted by the (S2,τe) formalism. The
downward deviation of theT1/T2 and NOE values from the apex
of this triangle provides a qualitative measure of the magnitude
and effective time frame of the internal motion occurring in
the approximately nanosecond range.9 The other relaxation data
predictingø2 probabilities above 0.05 lie along the upper right
boundary of the apparent triangle, consistent with effective time
constants near the fast limit. The vast majority of the dynamical
range is filled by relaxation data which is incompatible with
the two-parameter formalism.

Hence, when data from all three standard autocorrelation
relaxation experiments are available, the appropriate dynamical
range for the Lipari-Szabo formalism can be directly assessed
by the parameter fit relative to the experimental uncertainties.
The situation is far less transparent when only two of the three
relaxation data sets are available. Nearly all of the experimental
data of Figure 1A can be perfectly fitted with (S2,τe) parameters
using only the (T1,NOE) or (T1,T2) data. In panel B of Figure
1 are illustrated theS2 values estimated for the experimental
data of panel A using only the (T1,NOE) and the (T1,T2) data.
The correlation between the two estimates ofS2 is virtually
nonexistent. The only unambiguous result is thatS2 estimates
based on the (T1,NOE) data are systematically higher than those
derived from the (T1,T2) data.

TheS2 values derived from the (T1,T2) data agree quite well
with those obtained from the multiexponential autocorrelation
function analysis discussed in the following section, with no
discrepancies larger than 0.05, and the vast majority of estimates
within 0.02. These robust estimates ofS2 hold for relaxation
data lying far outside the Lipari-Szabo regime. As we have
previously shown,9 the generalized order parameter is quite
reliably determined directly fromT1 andT2 data without recourse
to modeling of the internal autocorrelation function.

whereR denotes the rigid tumbling limit value. For macromol-
ecules tumbling appreciably slower than the heteronuclear
Larmor frequency, this estimate of the generalized order
parameter is expected to hold for all internal motion which has
rates comparable to or faster than the heteronuclear Larmor
frequency.

Clearly, in general theS2 values obtained using only (T1,
NOE) data to fit the Lipari-Szabo formalism are unreliable
for globular macromolecules. A more conservative application
would be to only considerS2 values based on (T1,NOE) data
for which the predictedτe value is less than 25 ps in hopes of
empirically estimating the dynamical bounds for the Lipari-
Szabo formalism. When compared against the corresponding
S2 values obtained from only (T1,T2) data (which are highly
reliable in this dynamical regime), the∆S2 values range from
0.004 to 0.242, with 15% being in excess of 0.2. Arguments
that T1 values alone can be used to deriveS2 values37 have
assumed Lipari-Szabo dynamics and appear to be of little
practical significance for macromolecular analysis. Not only is
the argument invalid outside of the Lipari-Szabo regime, but
also T1 and NOE data appear to be insufficient to establish
whether Lipari-Szabo dynamics apply.

In panel C of Figure 1 is illustrated the corresponding
comparison ofτe values estimated from the experimental data
of panel A using either (T1,NOE) or (T1,T2) data. Two distinct
regions are apparent. In the nominal Lipari-Szabo range below

∼30 ps (i.e., logτe ) 1.5), theτe values estimated from the
(T1, NOE) and (T1,T2) data are again largely uncorrelated. The
τe values obtained from the (T1,T2) data are systematically longer
than those estimated from (T1,NOE) data. Above 30 ps, the
predictedτe values obtained from the (T1,NOE) and (T1,T2) data
are much more strongly correlated, with a slope significantly
higher than the expected value of 1.0. As discussed in more
detail in the following section, estimation of an effective time
constant in this dynamic regime is problematic, even when all
three autocorrelation relaxation values are known. However, the
time constants estimated from the (S2,τe) fit to the (T1,NOE)
and (T1,T2) data are dramatically smaller than the corresponding
dominant time constants estimated from the multiexponential
autocorrelation function analysis of the completeT1, T2, and
NOE data. In particular, theτe values obtained from the (T1,T2)
data are on average 9-fold smaller, with a substantial dispersion
in the individual ratios.

In summary, for the situation in which only experimentalT1

and NOE data are available, it is unclear whether any quantita-
tive assessment of macromolecular dynamics can be validly
drawn. In the absence of an effective monitor of theJ(0)
contribution to the spectral density function, normally provided
by T2 measurements, separation of the contributions from
internal motion vs global tumbling is problematic. The situation
is more favorable in the case of theT1 andT1F (or T2) data sets
as obtained from the2H relaxation experiments developed by
Kay and co-workers.3 In this case, robust estimates ofS2 can
be obtained which appear to become only modestly unreliable
when substantial internal orientational disorder occurs at a rate
comparable to the heteronuclear Larmor frequency. On the other
hand, effective time constants derived from analysis of onlyT1

andT2 data can only be considered highly qualitative at best.
The standardT1, T2, and NOE autocorrelation experiments

can potentially be augmented by cross correlation experiments
such as the dipolar cross-correlated cross relaxation (SIIS)
experiment introduced by Ernst and Ernst.38 This experiment
samples the spectral density function at zero frequency and at
the 13C Larmor frequency, which in turn are the terms which
generally dominate macromolecularT1 andT2 (or T1F) values.
Using both 2H autocorrelation and13C cross correlation
measurements on a labeled SH3 domain, Kay and co-workers
have demonstrated that the SIIS cross-correlated cross relaxation
rates are approximately proportional to the2H-13C bond
generalized order parameters.6 Since the SIIS cross-correlated
cross relaxation rate is directly related to theSHCH

2 order
parameter, it provides an additional constraint on the possible
motions consistent with the generalized order parameterS2.
However, these cross correlation data can provide little ad-
ditional information regarding either the time frame of this
internal motion or the partitioning of motion between fast limit
and slower motions.

IIB. Multiexponential Expansion of the Internal
Autocorrelation Function

The generalized order parameterS2 characterizes the fraction
of the autocorrelation function which is quenched by the global
molecular tumbling. Internal motions slower than molecular
tumbling influence the observed relaxation values only via the
T2 effects of chemical exchange arising from motion in the
micro- to millisecond regime. Field strength dependence39 and
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spin-lock40,41 studies can be used to deconvolute the chemical
exchange contribution, as will be assumed in the following
analysis. The correlation function describing diffusive isotropic
molecular tumbling is given by

where τM is the global tumbling time. The autocorrelation
functions and resultant spectral density functions for both
symmetric and asymmetric ellipsoidal diffusion tensors have
been described.7,42 Proteins exhibiting symmetric43 and asym-
metric44 ellipsoidal diffusion have been characterized. For the
isotropic case, if the overall and internal motions are indepen-
dent, the total correlation function can be rigorously factored.
Model calculations indicate that an analogous separability of
internal and overall motion is operationally valid for modestly
anisotropic ellipsoidal diffusion, consistent with the relaxation
analysis of native globular proteins.44,45

If, in addition to separability, the internal correlation function
can be represented as a sum of exponentials,

the total correlation function can then be represented as

where the time constants 1/τi ) 1/τM + 1/τi′, with τi′ denoting
the time constants of the internal autocorrelation function and
the sum of the amplitudesRi equaling 1- S2. In this case,S2

represents the limiting value of the internal correlation function
for time constants less thanτM which, as noted by Lipari and
Szabo, is experimentally indistinguishable from the infinite time
limit order parameter.7

Reliable decomposition of experimental data into a sum of
exponentials containing similar time constants is notoriously
problematic unless the (small) number of terms is known a
priori.46 Given a maximum of five data points (i.e., the
experimentally sampled spectral density values), such an ap-
proach is fruitless for analyzing relaxation data. A differing
approach can be taken by noting that relaxation effects arise
from three distinct frequency regimes. Motions having charac-
teristic frequencies significantly above the highest spectral
density component sampled in the relaxation experiment (i.e.,
ωH+C for 13C relaxation) attenuate the relaxation interactions
without a discernible frequency dependence. Molecular dynam-
ics simulations indicate that librational relaxation in the (sub)-
picosecond time frame will lead to a minimum of∼10% decay
of the autocorrelation function in the fast limit frequency range.47

At the other extreme is the previously mentioned relaxation
resulting from overall molecular tumbling. The remainder of
the relaxation arises from internal motions with characteristic
frequencies around the1H and heteronuclear Larmor frequencies

which differentially affect the various spectral density compo-
nents monitored by the relaxation experiment, thus giving rise
to a discernible frequency dependence.

Following this approach to frequency partitioning, the relevant
components of an arbitrary exponential expansion for the
internal correlation function can be represented by

The potential utility of this frequency partitioning depends on
two considerations. It must be possible for every set of
experimental (T1,T2,NOE) values to define a common scale
factora such that the fast limit orientational disorder represented
by the first term of eq 6 is approximately constant, independent
of the exponential parameters used to represent the second and
third terms of that equation. Furthermore, the scale factorb
should be as small as is consistent with an approximately
constant estimate of the generalized order parameterS2. As is
apparent from eq 5, a lower limit to the value ofb is imposed
by the fact that, when internal motions contribute at frequencies
near that of the overall tumbling rate, unambiguous separation
between internal and overall motion is no longer possible. For
the frequency range in which separation into internal and overall
motion is ambiguous (i.e., the third term of eq 6), all contribu-
tions will be folded into theS2 value, with the recognition that
bωC represents the slowest internal motion monitored. Under
these conditions, the spectral density function can be represented
as

The amplitude of the intermediate frequency motion∑âi is then
identified with the decrease in the order parameter valueSf

2 -
S2, which arises from these motions. In principle, the number
of Lorentzian terms (N) representing the intermediate frequency
internal motion can be arbitrary. However, as determined by
the Monte Carlo simulations described below, the resulting mean
and standard deviation estimates forS2 andSf

2 are essentially
invariant forN > 4. This upper limit of four Lorentzian terms
is a manifestation of the relatively narrow frequency window
(ωH+C to ωC) sampled by the nonzero spectral density compo-
nents.

Since the sum of the amplitudes in eq 7 is normalized, there
are three independent dynamical parameters for theN ) 1 case,
which corresponds closely to the previously proposed extended
model-free formalism.8 As there is a 1-to-1 mapping onto the
experimentalT1, T2, and NOE values for the full range ofN )
1 dynamical parameters,9 unique predictions ofS2 andSf

2 values
is trivially valid. It is less transparent as to whether the nine
independent dynamical parameters of theN ) 4 case will map
onto the three experimental relaxation values so as to generate
an effective constancy in the predictedS2 and Sf

2 values. As
illustrated in section IIC below, using experimental relaxation
data from E. coli thioredoxin, it is demonstrated that the
predictedS2 andSf

2 values are largely invariant, regardless of
the number of exponential terms used to model the underlying
dynamical processes.

It should be noted that eq 7 withN ) 1 is not strictly
equivalent to the (Sf

2,Ss
2,τe) representation of the earlier extended

model-free formalism.8 In that earlier derivation, it was argued
that, if the fast limit motions are axially symmetric and
dynamically independent of the slower internal motions, then

(40) Szyperski, T.; Luginbuhl, P.; Otting, G.; Guntert, P.; Wuthrich, K.
J. Biomol. NMR1993, 3, 151.

(41) Akke, M.; Palmer, A. G.J. Am. Chem. Soc.1996, 118, 911.
(42) Woessner, D. T.J. Chem. Phys.1962, 37, 647.
(43) Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A.J. Am. Chem.

Soc.1995, 117, 12562.
(44) Tjandra, N.; Wingfield, P.; Stahl, S.; Bax, A.J. Biomol. NMR1996,

8, 273.
(45) Schurr, J. M.; Babcock, H. P.; Fujimoto, B. S.J. Magn. Reson.

Ser. B1994, 105, 211.
(46) Lanczos, C.Applied Analysis; Prentice Hall, Inc.: Englewood Cliffs,

NJ, 1956.
(47) Levy, R. M.; Karplus, M.; McCammon, J. A.J. Am. Chem. Soc.

1981, 103, 994.

Co(t) ) 1/5e
-1/τM (3)

Ci(t) ) S2 + ∑Rie
-1/τi′ (4)

C(t) ) 1/5S
2e-1/τM + 1/5∑Rie

-1/τi (5)

Ci(t) ) ∑
t)0

1/aωH+C

Rie
-1/τi + ∑

t)1/aωH+C

1/bωC

âie
-1/τi + ∑

t)1/bωC

τM

γie
-1/τi (6)

J(ω) ) 2/5[S
2τM/(1 + (ωτM)2) + ∑

1/aωH+C

1/bωC

âiτi/(1 + (ωτi)
2)] (7)
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S2 ) Sf
2Ss

2. In the formulation described herein, no such
assumption of axial symmetry or independence of time scales
is invoked. Conversely, in the present formulation, the amplitude
of the intermediate frequency internal motion cannot be simply
identified asS2/Sf

2.
The utility of the present approach derives from the range of

internal dynamics for which the corresponding autocorrelation
function can be represented as a (potentially continuous) sum
of exponentials. As an isolated random process has a correlation
function e-t/τ, the correlation function for the sum of such
random processes will be trivially represented by a multiexpo-
nential expansion. More physically interesting are the autocor-
relation functions for familar explicit models, such as restricted
diffusion around a fixed axis48-50 and diffusion in a cone,51,52

which are expressed as an infinite sum of exponentials. These
examples highlight the point that, in general, there can be no
expectation of establishing a direct correlation between each
exponential time constant component and a specific physical
transition. In the present analysis, the time constants serve to
assign the corresponding amplitude to specific characteristic
frequency ranges of the autocorrelation function.

In an explicit approach to characterizing polymer and protein
dynamics, the Smoluchowski equation models the time evolution
of the distribution function for the dipole orientation within the
time regime in which friction and diffusion prevail over inertial
effects, estimated to correspond to time constants greater than
10 ps.53 Multiexponential solutions to the one-dimensional
equation have been derived, and extension to the three-
dimensional equation has been explicitly anticipated.54,55

Most generally germane is the fact that random multiplicative
processes for which the completion of the primary process
depends on the previous completion of a set of subprocesses
give rise to multiexponential distribution functions.14 In the
simplest analysis, the probability for the primary processP
equals the product of the probabilities of the subprocesses∏pi.
When the individual distributions of the logpi values satisfy
the conditions of the central limit theorem, the probability
distribution function ofP is log-normal. With a sufficiently large
variance of the logpi values, the log-normal distribution
approximates an inverse frequency distribution (i.e., scale
invariant distribution function of relaxation times [F(τ) dτ )
dτ/τ]) over any finite positive interval.13 In turn, the 1/f
distribution implies a 1/f “noise” energy fluctuation spectrum.56

1/f noise as well as log-normal and 1/f distributions are widely
observed in solid-state physics.15 Illustrations most relevant to
the current discussion include the demonstration that glass flow
dynamics monitored by optical hole burning follows a 1/f
distribution with a log-normal tail over a time range of 1016.16

Concepts of energetic “frustration” and roughness of the
potential energy surface drawn from analysis of spin glass
physics have stimulated the energy landscape view of protein
dynamics.57-59 For the ligand recombination kinetics of myo-
globin covering up to a 107-fold range in time, both exponential

(four-term expansion) and power law expressions could be fitted
to the data within experimental error.60 Interpreting protein
folding dynamics using a random energy model with a funnel
yields a log-normal distribution of rates.17 Explanation of 1/f
noise as manifesting a multiple-relaxation process arising from
the roughness of the potential energy surface gains support from
the observation of such a frequency dependence in the energy
fluctuations in molecular dynamics simulations of water61 and,
more recently, of a polyalanine helix-coil transition.62

IIC. Analysis of Experimental Relaxation Data Using a
Multiexponential Expansion of the Internal
Autocorrelation Function

As a sampling of the physically plausible range of relaxation
data,T1, T2, and NOE values for 201 side-chain and main-chain
aliphatic methine and methylene1H-13C bond vectors ofE.
coli thioredoxin4 were modeled according to eq 7. Separate
Monte Carlo analyses were carried out assuming from one to
four Lorentzian terms for intermediate frequency internal
motion, with their characteristic frequencies randomly selected
between the bounds ofaωH+C andbωC. The calculations were
repeated for differing values ofa andb. The parametersa and
b were varied to obtain the maximal range for which the root-
mean-square deviation (rmsd) of the predictedS2 andSf

2 values
are generally smaller than the anticipated uncertainty in the
experimental relaxation data.

For each case of one to four Lorentzian terms, 3× 108 sets
of independent values ofS2, Sf

2 and the Lorentzian amplitude
and time constants were tested against each set of experimental
(T1,T2,NOE) values, with uncertainty bounds of 1% forT1 and
T2 and 0.01 for NOE. Use of 0.5% and 0.005, respectively, for
the T1, T2, and NOE uncertainty bounds did not significantly
affect the results of the subsequent analysis. In the first round
of Monte Carlo analysis, the random selection of test amplitudes
was constrained only by the normalization of their sum. For
the sets of experimental (T1,T2,NOE) values which were not
satisfied by at least 104 sets of dynamical parameters, a second
round of Monte Carlo analysis was performed. In the second
round of Monte Carlo analysis, the range ofS2 andSf

2 tested
for each experimental (T1,T2,NOE) triplet was set to twice the
range obtained in the first round (3 times that range if less than
100 sets of dynamical parameters passed the first round). In no
case during the second round of Monte Carlo analyses did the
extremum of the predictedS2 andSf

2 values come within 30%
of these range limits. For each experimental (T1,T2,NOE) triplet,
the mean and standard deviation of the derivedS2 andSf

2 values
were determined for all sets of dynamical parameters consistent
with the (T1,T2,NOE) triplets for one to four independent
Lorentzian terms.

Optimal frequency boundaries of 4ωH+C and 0.5ωC were
obtained. For these experimental data obtained at 14.1 T, the
corresponding time constants are 53 ps and 2.1 ns, respectively.
Appreciable extensions of the frequency range in either direction
results in a substantial decrease in the constancy of theS2 and
Sf

2 values predicted by the multiexponential expansion repre-
sentation. The standard deviations forS2 andSf

2 are plotted in
Figure 2A and B, respectively. The symbols for the calculated
standard deviations are placed at the positions corresponding
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(49) Wittebort, R. J.; Szabo, A.J. Chem. Phys.1978, 69, 1722.
(50) London, R. E.; Avitabile, J.J. Am. Chem. Soc.1978, 100, 7159.
(51) Kinoshita, K.; Kawato, S.; Ikegami, A.Biophys. J.1977, 20, 289.
(52) Lipari, G.; Szabo, A.Biophys. J.1980, 30, 489.
(53) Perico, A.; Pratolongo, R.Macromolecules1997, 30, 5958.
(54) Edholm, O.; Blomberg, C.Chem. Phys.1979, 42, 449.
(55) Pratolongo, R.; Perico, A.; Freed, K. F.; Szabo, A.J. Chem. Phys.

1995, 102, 4683.
(56) Ziel, A. v. d.Physica1950, 16, 359.
(57) Stein, D.Proc. Natl. Acad. Sci. U.S.A.1985, 82, 3670.
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U.S.A.1985, 82, 5000.
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to the experimental values of T1/T2 (normalized to the rigid
tumbling limit value) vs NOE. For the various individual
experimental (T1,T2,NOE) triplets, the maximum range vs the
standard deviation of the predictedS2 and Sf

2 values were
compared and found to be consistent with an approximately
Gaussian distribution.

The triangular pattern in Figure 2 defines the boundaries of
all T1/T2 vs NOE values consistent with an arbitrary multiex-
ponential expansion representation of the internal autocorrelation
function, assuming 1/4ωH+C < τi < 1/0.5ωC. Extending the
contour toτi ) 0 increases the NOE value at the right-hand
corner by 0.05. Only for rather mobile positions (i.e., normalized
T1/T2 < 0.25) does the range of exponential amplitudes and
time constants compatible with the experimental data ap-
preciably deteriorate the precision of theS2 (>0.01) andSf

2

(>0.025) determinations. Uncertainty in theS2 estimates (Figure
2A) is exacerbated at low NOE values, as expected since this
is indicative of a predominance of internal motion that is slow
compared toωH+C. The uncertainty of theS2 estimates for this
range ofT1/T2 and NOE values rises nearly 2-fold if the low-
frequency limit for the exponential sum of eq 7 is reduced to
0.33ωC. Conversely, the uncertainty in theSf

2 estimates increases
for larger experimental NOE values, as expected for a predomi-
nance of internal motion nearωH+C.

For the relaxation data of Figure 2, both the means and
standard deviations for theS2 andSf

2 values derived from an
analysis using only the two-Lorentzian internal motion repre-
sentation of eq 7 closely approximate those obtained assuming
equal weighting of theN ) 1, 2, 3, and 4 Lorentzian
representations. Indeed, for these relaxation data, the previously
proposed two-Lorentzian internal motion representation4,9 as-
suming fixed time constants of 1/ωH+C and 1/ωC predictsS2

values which deviate from those of the fullN ) 1, 2, 3, 4
Lorentzian estimates by a maximum of 0.02 and an rmsd of
0.004. Similarly, this earlier simplified Larmor frequency-
selective representation predictsSf

2 values which deviate from
those of the fullN ) 1, 2, 3, 4 Lorentzian estimates by a
maximum of 0.04 and an rmsd of 0.008. On the other hand,
the 1-to-1 mapping of the three-parameter dynamical formalisms
onto the three experimental relaxation values precludes the use
of these simplified formalisms in estimating the intrinsic
imprecision of the order parameter estimates arising from an
arbitrary multiexponential representation of the autocorrelation
function. Although, based on the relaxation data of Figure 2,
the two-Lorentzian internal motion representation of eq 7
appears to provide reliable estimates of the intrinsic imprecision
of the order parameters, in general it is recommended to use
the full N ) 1, 2, 3, 4 Lorentzian analysis for deriving these
estimates. By including up to the four-Lorentzian representation,
more complex multiexponential autocorrelation function be-
havior potentially unrepresented in the data of Figure 2 should
still be adequately modeled.

The wide range of mutual compensating shifts in the
individual amplitudes for theN ) 2, 3, and 4 representations
of eq 7 provides some insight into how the robustness of theS2

andSf
2 estimates is achieved. The individual amplitudes for the

two-Lorentzian internal motion representation is illustrated in
Figure 3 for the case of Asp 131Hâ2-13Câ vector. Here, 155
pairs of internal motion Lorentzians were randomly generated
which fit theT1, T2, and NOE values for the Asp 131Hâ2-13Câ

vector to within 0.005. Following eq 7, the sum of the
amplitudes of these two Lorentzians equalsSf

2 - S2 (i.e., (+)).
For each pair of Lorentzians illustrated, the lines connect the
amplitudes for the low (×) and high (b)-frequency components.
The pairs have been sorted in order of decreasingS2 values. It
is readily apparent that the amplitudes of the low- and high-
frequency Lorentzian components fluctuate far more than does
their sum. The rise in the (Sf

2 - S2) values at the right side of
the figure reflect the sampling of low-frequency components
near the 0.5ωC partition boundary. The resultant ambiguity in

Figure 2. Calculation of the standard deviations for theS2 (panel A)
and Sf

2 (panel B) values estimated by applying the multi-Lorentzian
spectral density formula of eq 7 to relaxation data from 201 methine
and methylene resonances ofE. coli thioredoxin. The symbols are
plotted at the experimentally observedT1/T2 (normalized to the rigid
tumbling limit value) vs NOE values with standard deviation values
of less than 0.01 (b), 0.01-0.02 (T), 0.02-0.03 (2), 0.03-0.04 (9),
and over 0.04 (f). The mean and standard deviations for theS2 and
Sf

2 values were determined assuming from one to four Lorentzians for
the internal motion representation. These were combined with equal
weighting to determine the aggregate standard deviations. In general,
the difference between the mean predictedS2 andSf

2 values forN ) 1
vs N ) 2 is roughly twice that betweenN ) 2 andN ) 3, while the
values forN ) 3 andN ) 4 are nearly converged. The series was
truncated atN ) 4 as the use of higher numbers of Lorentzians did not
further change the estimated means and standard deviations from the
N ) 4 case. The differences between the mean predictedS2 and Sf

2

values for differing numbers of Lorentzians and the dispersion of the
predictedS2 andSf

2 values for a given number of Lorentzians (N > 1)
generally contribute nearly equally to the aggregate standard deviation
estimates illustrated in Figure 2. The boundary curve represents the
full range of T1/T2 vs NOE values consistent with an arbitrary
multiexponential autocorrelation function in which decay rates faster
than 1/4ωH+C are combined into the fast limit order parameter. The
calculations for this curve are based on a1H2H13C spin system.4 The
corresponding curve for a1H13C spin system has the apex of the triangle
shifted 0.03 higher in NOE, while the right-hand corner is displaced
0.1 higher in NOE due to the absence of the competing2H-13C dipole
interaction.
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partitioning between internal and global dynamics is largely
responsible for the comparatively high estimated uncertainty
in theS2 value for this Câ. In addition to the mutual compensat-
ing shifts of the individual Lorentzian amplitudes required to
maintain an approximately constant sum, corresponding shifts
in the individual time constants occur simultaneously in order
to maintain the required fit to the experimental data.

In marked contrast to the robustness of theS2 andSf
2 estimates

over a wide range of dynamical parameters, the apparent time
constants are more poorly determined. One measure of this
dispersion is the standard deviation of the time constant for the
largest amplitude internal motion Lorentzian term in eq 7. For
the 201 (T1,T2,NOE) values in Figure 2, the median standard
deviation of the dominant time constant is 60%. Despite the
obvious appeal of using the relaxation data to extract confor-
mational transition rates, the variability of both the individual
Lorentzian amplitudes and time constants consistent with the
predicted (Sf

2 - S2) values argues strongly against such physical
interpretations, except for cases in which independent evidence
indicates a single dominant dynamic process.

In addition to the spectral density formula of eq 7 based on
a multiexponential internal autocorrelation function, the only
other necessary assumption of this analysis is that of the
separability of the internal and global tumbling dynamics.
Clearly, errors in the analysis of global tumbling will result in
distortion of the estimated internal dynamics parameters.
Qualitatively, it can be anticipated that such distortions will be
most severe for positions exhibiting limited internal mobility,
since in these cases the global tumbling contributes most
strongly to the relaxation behavior.

To examine these effects in more detail, the calculations of
Figure 2 were repeated using global tumbling times 10% higher
and 10% lower than the optimal value. In Figure 4 is illustrated
the average deviation of the apparent (Sf

2 - S2) andSf
2 values

from the order parameter values obtained in the analysis of
Figure 2 as a function of theS2 value. The 10% error in global
tumbling time results in approximately a 10% error in the
estimatedS2 value, with an underestimate occurring for the
overly long tumbling time and an overestimate occurring for
the foreshortened tumbling time. For small values ofS2, these
errors constitute fairly modest differences in the estimated
generalized order parameter. On average, the deviations in the
estimatedS2 values are compensated for nearly equally by
corresponding deviations in the estimated (Sf

2 - S2) and Sf
2

values. When analyzing positions withS2 values above 0.8 using
the 10% foreshortened global tumbling times, the relaxation

values no longer lie within the triangle predicted by the
multiexponential internal autocorrelation function. The potential
misinterpretation of these data in terms of chemical exchange
broadening can be directly tested by field strength dependence
or spin-lock studies.

The intrinsic imprecision in the determination ofS2 andSf
2

resulting from applying the multiexponential expansion to
precise data values was analyzed above in Figure 2. A proper
estimate of experimental order parameter uncertainty is obtained
by applying the multiexponential expansion analysis to the
relaxation data with the experimentally determined uncertainties
assigned. The practical utility of this dynamical representation
is demonstrated by the fact that, for most resonances, the derived
uncertainty of their order parameters primarily reflects the
magnitude of the experimental uncertainties in the relaxation
data rather than the magnitude of the intrinsic imprecision of
the dynamical representation.

The potential limitations of the frequency partitioning used
in eq 7 can be further probed by consideration of frequency
components which occur near the range boundaries. Regarding
the high-frequency boundary, dynamical processes having time
constants more than 10-20 times shorter than 1/ωH+C (i.e.,∼10
ps) do not have a discernible differential effect on the spectral
density components sampled by the NMR experiment. As time
constants between∼10 and∼50 ps represent a transition range
for which experimental characterization as either fast limit or
Larmor frequency sensitive motion is ambiguous, it is instructive
to consider cases in which such a motion is analyzed in terms
of the frequency-bounded multi-Lorentzian formalism of eq 7.
When relaxation data are synthesized from single-exponential
autocorrelation functions with time constants in the range of
10-50 ps and then analyzed according to the multi-Lorentzian
formalism with a 4ωH+C boundary, it is found that the amplitude
of the single-exponential component is partitioned betweenSf

2

and (Sf
2 - S2) approximately proportionate to the position of

that exponential time constant within the 10-50-ps interval.
Assessing the limitations of partitioning at the low-frequency

boundary is more problematic since, as is apparent in eq 5,
internal frequency components approximately equal to the
molecular tumbling frequency cannot yield independent ampli-

Figure 3. Individual Lorentzian amplitudes for the two-Lorentzian
internal motion representation (eq 7) for the relaxation data of the Asp
13 1Hâ2-13Câ dipole. The low (×)- and high (b)-frequency Lorentzian
amplitude components are illustrated along with their sum, which
defined asSf

2-S2 (+). The 155 randomly selected individual amplitude
pairs are ordered according to the descending value of the predicted
S2. The increase in theSf

2 - S2 values in the right-hand portion of this
figure reflects the presence of high-amplitude values for the low-
frequency components which are near the 0.5ωC frequency boundary.

Figure 4. Average errors inSf
2 (circles) andSf

2 - S2 (squares)
estimation for global tumbling times 10% shorter (open symbols) and
10% longer (closed symbols) than optimal. Order parameter calculations
were conducted as in Figure 2 for the same relaxation data set. The
deviations from theSf

2 andSf
2 - S2 values obtained for the optimal tM

are plotted against the optimalS2 values. The individual values were
averaged in bin intervals of 0.05. In the case of the 10% foreshortened
τM when theS2 value is above 0.8, the relaxation data lie outside the
range consistent with the multiexponential internal correlation function
representation.
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tude predictions. Hence, theS2 value derived from this formal-
ism is necessarily an upper bound. In the case of the 7-ns
molecular tumbling time ofE. coli thioredoxin considered
herein, the 0.5ωC frequency boundary implies an approximate
4-fold range in frequency for internal motions which are not
well characterized. The predicted dominant time constant
provides a means of detecting potential motion slower than the
partition boundary. For all resonances having a predicted
dominant time constant more than 2-fold faster than that of the
low frequency boundary, extension of low-frequency boundary
from 0.5ωC to 0.33ωC changed the estimatedS2 by less than
0.01. For resonances having predicted dominant time constants
nearer to the low-frequency boundary and relatively large
intermediate frequency motionSf

2 - S2, truncation effects should
be suspected, and use of a lower frequency boundary should
be considered.

In contrast to the 4ωH+C high-frequency partition which is
expected to be of general use for protein analysis, the optimal
choice of the low-frequency partition can be anticipated to be
modestly affected by the molecular tumbling time. For sub-
stantially differing molecular tumbling times, a comparison
between the intrinsic imprecision in the multiexponential
expansion and the experimental uncertainity of the relaxation
data should be conducted. Analogous considerations will apply
to the application of this formalism to15N relaxation data.

IIIA. Fast Limit Order Parameter Distribution for E. coli
Thioredoxin

The order parameter analysis presented above represents the
internal autocorrelation function in terms of a fast limit decay
and an arbitrary multiexponential expansion composed of decay
rates ranging from 4.ωH+C to 0.5.ωC. At 14.1 T, this 40-fold
difference corresponds to a time constant range from 53 ps to
2.1 ns. Robust estimates are obtained for both the fast limit
order parameter characterizing motions that are rapid compared
to the highest Larmor frequencyωH+C, and the generalized order
parameter, characterizing the rotational disorder arising from
the global molecular tumbling.

An obvious question which arises regards the degree to which
the fast limit order parameterSf

2 corresponds to dynamics within
localized potential minima and the degree to which larger scale
conformational transitions contribute predominantly to the
difference order parameterSf

2 - S2. A qualitative indication of
the plausibility of such a partitioning can be obtained by
consideration of the overall distribution ofSf

2 values throughout
the protein structure.E. coli thioredoxin exhibits typical main-
chain dynamics in which the vast majority of15N and 13CR

resonances have 0.8< S2 < 0.9,4,35 indicative of limited
dynamic angular disorder. Furthermore, in most cases the main-
chain Sf

2 - S2 values are small, indicating that fast limit
dynamics dominate the angular disorder. As described in more
detail in section IV, assuming anSf

2 value of 0.8, the order
parameter values at Câ and Cγ can be estimated for the case of
unrestricted side-chain torsional fluctuations within a given
rotamer state. The resultantSf

2 values of∼0.68 for Câ and∼0.52
for Cγ (assuming 3-fold rotational barriers) should represent a
lower bound for the fast limit order parameters of the side chains
attached to a moderately immobilized CR position if only
fluctuations within a rotamer state contribute significantly to
the observedSf

2 values.
With the exception of the highly mobile N-terminal serine

and the four trans prolines, all methine and methylene Câ

positions ofE. coli thioredoxin haveSf
2 values above 0.65 (Lys

57 Câ). Similarly, the 0.50 Cγ Sf
2 value of Lys 69 is the lowest

non-proline Cγ Sf
2 value in the protein. Hence, all non-proline

side chains exhibit fast limit order parameters, consistent with
dynamics within a given rotamer state, and indeed the observed
lower bounds correspond quite closely to the lower bound
anticipated for that dynamical model. In contrast, all four trans
prolines exhibit Câ Sf

2 values below 0.65 and Cγ Sf
2 values

below 0.51.
The explanation of the anomolous behavior of the proline

side chains is provided by the solid-state NMR observation that
the proline ring pucker transition occurs with a time constant
of 10-30 ps.63 The pattern of order parameters of Cδ > Câ >
Cγ predicted and observed in small proline-containing peptides64

is also observed for all of the prolines inE. coli thioredoxin,
including the anticipated higher order parameters for the single
cis Pro 76.4 As all four trans prolines have CR S2 values above
0.83, and their low side-chainSf

2 values are clearly indicative
of rapid motion of a magnitude larger than simple fluctuation
within a rotamer state. The proline-ring puckering dynamics
lie in the boundary range between the highest frequency
quantitated by the multiexponential autocorrelation function
expansion (i.e., 4ωH+C ≈50 ps) and the true fast limit range, in
which the relaxation effects are insensitive to the Larmor
frequencies (i.e.,<∼10 ps). Assuming a two-state pucker
transition to rationalize the proline relaxation data, the partition-
ing of the motion between theSf

2 and (Sf
2 - S2) values is

consistent with a transition time constant in the range of 20-
30 ps.

An analogous situation occurs for the methyl groups in which
the 3-fold rotation around the symmetry axis gives rise to a
predictable order parameter effect, 0.111 for an ideal tetrahedral
geometry. The derived methylSf

2 values are consistently lower
than that expected from fluctuation in a single rotamer state,
indicative of the fact that the methyl rotamer transitions are
contributing to theSf

2 values, consistent with previous measure-
ments indicating that methyl rotation occurs at a rate near the
boundary of the multiexponential autocorrelation function
frequency partitioning.65 The multiexponential autocorrelation
function frequency partitioning cleanly distinguishes the two
best-characterized cases in which theSf

2 values could be
anticipated to exhibit intermixing of intrarotamer fluctuations
and larger scale conformational transitions. These results are
strongly suggestive of the utility of this formalism for analysis
of more complex dynamical behavior.

IIIB. Quasiharmonic Analysis of Correlated Side-Chain
Motion

Correlated motion arises from the restriction of mobility due
to either intramolecular or solvent-solute interactions. Rota-
tional correlations generally serve to minimize the displacements
of all atoms.66 This effect is opposed by the thermodynamic
drive to increase configurational entropy by maximizing the
magnitude of the uncorrelated motion. Under the quasiharmonic
approximation, the magnitude of both correlated and uncorre-
lated fluctuations is characterized by the covariance matrixσ
of the internal coordinatesq with elementsσij ) 〈(qi - 〈qi〉)(qj

- qj〉)〉.67 Assuming classical dynamics, the configurational

(63) Sarkar, S. K.; Young, P. E.; Torchia, D. A.J. Am. Chem. Soc.1986,
108, 6459.

(64) London, R. E.J. Am. Chem. Soc.1978, 100, 2678.
(65) Daragan, V. A.; Mayo, K. H.J. Magn. Reson. Ser. B1996, 110,

164.
(66) Helfand, E.Science1984, 226, 647.
(67) Karplus, M.; Kushick, J. N.Macromolecules1981, 14, 325.
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entropy difference∆Sq
c depends only on the determinant of this

matrix for the individual conformational states.

Quantum mechanical corrections to the quasiharmonic con-
figurational entropy introduce only an additive constant to each
determinant term in this expression.68 Quantum mechanical
corrections to order parameter calculations introduce a uniform
decrease due to the bond length and bond angle fluctuations at
the H-X bond.69 For the dihedral angle space Monte Carlo
simulations considered below, additional quantum mechanical
corrections to the order parameters are negligible.70

As the covariance matrix is symmetric semidefinite, it can
be diagonalized by an orthogonal transformation. The resultant
diagonal elements are the variances of the uncorrelated fluctua-
tions for each of the internal coordinates, consistent with the
general fact that only the uncorrelated fluctuations will con-
tribute to the configurational entropy. As a result of the Gaussian
distribution which arises from a parabolic potential, the con-
figurational entropy predicted from the quasiharmonic ap-
proximation represents the upper bound of the configurational
entropy consistent with a given variance of the conformational
fluctuations.71

In contrast to the complex network of correlated motions
characterizing protein main-chain fluctuations, it is plausible
to model the torsional dynamics of the buried side chains in a
simpler fashion. The surrounding protein matrix imposes an
effective diffusive barrier. The side chain will tend to maximize
its uncorrelated fluctuations within this potential well. However,
the torsional fluctuations of the main-chain atoms restrict the
range of side-chain torsional fluctuations compatible with the
steric constraints of the protein matrix, thus imposing correlated
motion.

A further simplication of the present analysis is to freeze the
“hard” variables of bond lengths and bond angles and consider
only the effects of “soft” torsional fluctuations.72 Bond angle
fluctuations can make a significant contribution to the configu-
rational entropy.67 However, since this formalism is designed
to estimate differences in configurational entropy, only the
variation in bond angle fluctuations which are induced by
restricted torsional fluctuations will affect the calculations. As
the free energy of the torsional restrictions considered herein is
reasonably modest (∼kBT), the entropy contributions of dif-
ferential bond angle fluctuations are anticipated to be compara-
tively small.

Illustrating for the case of two side-chain dihedral angles,
the correlated motion is represented by the correlation coef-
ficients for the torsional fluctuations of the main-chain,ø1, and
ø2 dihedral angles. As vindicated by the calculations given
below, the dominant correlations can be expected for the main-
chain dihedral angle for which the corresponding bond vector
is approximately parallel to the Câ-Cγ bond, thus allowing for
“crankshaft” type coupling of the main-chain andø2 fluctuations.
Such crankshaft motions are well-known to play a dominant
role in the conformational dynamics of linear polyethylene-like
polymers.66

With the additional assumption that the correlation between
ø1 andø2 fluctuations occur only via their mutual correlations

with the main chain, for a side chain having aø1 value near
180°, the corresponding covariance matrix is

The resultant eigenvalues areσφ
2, (1 - cφø1

2)σø1
2, and (1-

cφø2
2)σø2

2 where cij is the correlation coefficient〈∆i∆j〉/
〈∆i2〉0.5〈∆j2〉0.5, with ∆i representing the deviation of the torsional
angle from its mean position andσi is the rmsd of the torsional
fluctuation. Note that, by assumption,cø1ø2 ) cφø1cφø2. For ø1

values near-60°, the main-chainψ dihedral angle is substituted
for φ. For leucine and phenylalanine residues, as considered
below, over 90% of the observedø1 values are near either-60°
or 180°.73

The covariance matrix of eq 9 contains three torsional
fluctuations and two correlation coefficients which need to be
estimated from the experimental relaxation data. Generally this
will represent an underdetermined system. Given the main-chain
torsional fluctuation, a four-dimensional grid of Monte Carlo
simulations can be carried out to determine the range of side-
chain torsional fluctuations and correlation coefficients consis-
tent with the experimental data. Gaussian sampling of the main-
chain,ø1, andø2 torsional angle distributions are constructed
so that the degree of correlation of the side-chain torsional
fluctuations to those of the main chain is systematically adjusted.

Although a physically plausible model for the side-chain
fluctuations can be so simply described, specification of the
relevant main-chain torsional fluctuation is more problematic.
Comparison to the experimental13CR relaxation data requires a
modeling of the local main-chain motion. The simplest model
ascribes all of the13CR relaxation to the fluctuation of a single
main-chain torsional angle. This model has the conceptual appeal
that, for side-chain dynamics dominated by a crankshaft type
of fluctuation, the maximum range of side-chain fluctuations is
predicted. More realistic is to assume correlated intraresidue
(φ,ψ) motion, for which molecular dynamics simulations have
indicated a correlation coefficient of approximately-0.5 for
R-helical residues.74,75 Although the introduction of correlated
intraresidue (φ,ψ) motion serves to reduce the range of side-
chain fluctuations consistent with experimental relaxation data
considered below, it does not substantially affect the predicted
degree of correlation and hence the conformational entropy for
the residual permitted range of side-chain fluctuations.

IIIC. Correlated Motion of Buried Side Chains

Phe 12 ofE. coli thioredoxin has HR-CR, Hâ2-Câ, Hâ3-Câ,
and Hδ-Cδ S2 order parameters of 0.82, 0.78, 0.79, and 0.93,
respectively.4 As the Sf

2 values are not statistically different,
the relevant internal motion occurs in the fast limit regime. Using
the crystallographically observedø1 and ø2 dihedral angles
(-158,92),36 Monte Carlo simulations were carried out as a
function of dihedral angle variances and correlation coefficients
to determine combinations consistent with the observed relax-
ation order parameters. The main-chainφ rotation axis is
approximately parallel to the Câ-Cγ bond vector, so that
crankshaft coupling ofφ and ø2 torsional fluctuations is
anticipated. In the initial round of simulations, the CR order
parameter was interpreted in terms of onlyφ torsional fluctua-

(68) Schlitter, J.Chem. Phys. Lett.1993, 215, 617.
(69) Bruschweiler, R.J. Am. Chem. Soc.1992, 114, 5341.
(70) Sunada, S.; Go, N.; Koehl, P.J. Chem. Phys.1996, 105, 6560.
(71) Rojas, O. L.; Levy, R. M.; Szabo, A.J. Chem. Phys.1986, 85,

1037.
(72) Go, N.; Scheraga, H. A.J. Chem. Phys.1969, 51, 4751.

(73) Ponder, J. W.; Richards, F. M.J. Mol. Biol. 1987, 193, 775.
(74) Daragan, V. A.; Mayo, K. H.J. Phys. Chem.1996, 100, 8378.
(75) Garnier, N.; Genest, D.; Genest, M.Biophys. Chem.1996, 58, 225.

∆Sq
c ) 1/2kB ln[det σB/detσA] (8) [σφ

2 cφø1
σφσø1
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σφσø2

cφø1
σφσø1

σø1

2 cφø1
cφø2
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2 ] (9)
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tions. It should be noted that, forS2 values greater than 0.6, the
order parameter relationship of eq 1 can be further simplified
to state thatS2 depends only on the variance of the H-X bond
orientation, regardless of whether the bond motion occurs via
discrete jumps or by one- or two-dimensional diffusion.76 As a
result, the direction of motion providing the largest variance
will generally dominate the determination of the corresponding
order parameter.

A Gaussian fluctuationσφ of 16° predicts the observed 0.82
CR order parameter.12 ø1 and ø2 values were selected so that
their population mutually satisfied the constraints of a givenσi

and a given correlation coefficient with theφ angle values. A
grid search was conducted over the total torsional fluctuations
σø1 andσø2 and the corresponding correlation coefficientscφø1

andcφø2 with the main-chainψ dihedral angle fixed. For each
set of (σø1, σø2, cσø1, cσø2) values, 104 different side-chain
conformations were generated. Calculation of the corresponding
order parameters was facilitated by use of the explicit repre-
sentation of the spherical harmonics in terms of Cartesian
coordinates.77 Using the estimated experimental uncertainties
of the Phe 12 relaxation data applied to the multiexponential
order parameter analysis, the set of all (σø1, σø2, cσø1, cσø2) values
predicting the experimental order parameters with aø2 prob-
ability in excess of 0.05 were determined. For each (σø1, σø2)
value in Figure 5, the individual data points are derived by

averaging over the (cσø1, cσø2) values with weighting according
to the predictedø-square probability.

The average magnitude of uncorrelatedø1 and ø2 torsional
fluctuations (i.e., sqrt[(1- cφø1

2)σø1
2] and sqrt[(1- cφø2

2)σø2
2],

respectively) as a function of totalø1 andø2 torsional fluctuations
σø1 and σø2 are plotted in panels A and B of Figure 5,
respectively. As anticipated for crankshaft-like dynamics, quite
large fluctuations ofø2 are consistent with the rigidly constrained
aromatic ring (panel B). For any given value ofσø1, as theø2

fluctuations increase, the magnitude of uncorrelated fluctuations
reaches a maximum and then declines, indicative of increasingly
strong anticorrelation betweenφ andø2 fluctuations. In contrast,
σø1 is restricted to values well below the approximate 18° limit
imposed by the local rotamer potential well of such an sp3-sp3

system (panel A). Furthermore, as illustrated in this panel, the
ø1 fluctuations are comparatively weakly correlated with those
of φ, as indicated by the predicted magnitude of the uncorrelated
ø1 fluctuations being nearly as large as the magnitude of the
total ø1 fluctuationsσø1.

In panel C of Figure 5, the determinant of eq 9 is used to
estimate the relative side-chain torsional configurational entropy
as a function ofσø1 andσø2. In panel D is given the predicted
side-chain heavy atom rmsd for these fluctuations. For (σø1, σø2)
values around (7°,18°), a near-maximal entropy is obtained with
a side-chain heavy-atom rmsd of 0.55 Å, approximating the
mean-square displacement commonly deduced from X-ray
diffraction analysis and molecular simulations. For this (σø1,σø2)
pair, cφø1 is estimated to be 0.28, consistent with the average
main-chain-ø1 correlation coefficient from molecular dynamics
simulations.74 For the optimal (σø1,σø2) value at (7°,18°), cø1ø2

is estimated to be approximately-0.25, consistent with mo-
lecular dynamics calculations for buried aromatic rings,78 despite
the fact that, in the present calculations, these correlations are
assumed to arise only via their mutual coupling toφ fluctuations.

The corresponding analysis of Phe 12 dynamics assuming
no torsional correlation yields no (σø1,σø2) values predicting the
experimental order parameters withø2 probabilities above 0.003.
An analogous calculation assumingψ-side-chain torsional
correlation with theφ torsional angle fixed also yields no
combinations fitting experimental side-chain order parameters
with ø2 probabilities above 0.003. As expected, the predominant
limitation in both of these calculations is the inability to
accommodate the high aromatic ring order parameter, except
for implausibly small dihedral angle fluctuations.

Not only does the assumption of predominant correlation
betweenφ and the side-chain dihedral angles appear well-
vindicated, but also these results suggest that the fluctuations
of the main-chainψ torsional angle may be attenuated by its
gauche orientation relative to the aromatic ring. This effect can
be more realistically modeled allowing for correlated (φ,ψ)
fluctuations. Molecular dynamics simulations ofR-helical
residues have indicated that the intraresidue (φ,ψ) fluctuations
have a correlation coefficient of approximately-0.5.74,75 Phe
12 lies within theR1 helix of the protein. Assuming Gaussian
torsional fluctuations with acφψ of -0.5 and bothσφ and σψ
equal to 13° predicts the observed 0.82 CR S2 value. In Figure
6 are plotted the corresponding uncorrelatedø1 (panel A) and
ø2 (panel B) fluctuations, along with the relative side-chain
torsional entropy (panel C) and side-chain heavy-atom rmsd
(panel D) for conditions analogous to those of Figure 5. As
compared to the data of Figure 5, the heavy-atom rmsd is
increased approximately 0.25 Å (panel D), and the range ofø2

(76) LeMaster, D. M.J. Biomol. NMR1997, 9, 79.
(77) Bremi, T.; Bruschweiler, R.; Ernst, R. R.J. Am. Chem. Soc.1997,

119, 4272.
(78) McCammon, J. A.; Gelin, B. R.; Karplus, M.Nature 1977, 267,

585.

Figure 5. Side-chain torsional dynamics ofE. coli thioredoxin Phe
12 assuming correlated fluctuations for (φ,ø1) and (φ,ø2) in which the
Gaussian main-chainφ fluctuations have aσφ of 16° (predicts CR S2 of
0.82) andψ is fixed. Panels A and B illustrate the magnitude (in
degrees) of uncorrelatedø1 and ø2 fluctuations, respectively, as a
function of the total torsional fluctuationsσø1 andσø2. The corresponding
quasiharmonic relative side-chain torsional configurational entropy and
side-chain heavy-atom rmsd are given in panels C and D. For each set
of (σø1,σø2,cφø1,cφø2) values, 104 different side chain conformations were
generated, and the resultant order parameters calculated. The set of all
(σø1,σø2,cφø1,cφø2) values which predict the experimental order parameters
with a ø2 probability of >0.05 were determined. The values given in
the figure for each (σø1,σø2) pair were obtained by summing over the
(cφø1,cφø2) values weighted according to theirø2 probability.
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fluctuations consistent with the experimental order parameters
is significantly reduced.

Minimization of the side-chain heavy-atom rmsd due to steric
conflict with the protein interior provides the energetic drive
for the correlated motion of the phenylalanine residue. The
increase in the predicted side-chain heavy-atom rmsd resulting
from analyzing the effects of increasedψ fluctuations further
suggests that, reciprocally, the immobilization of the aromatic
ring will cause a reduction in the main-chainψ fluctuations
relative to those ofφ. These effects are further accentuated if
the φ andψ fluctuations are assumed to be uncorrelated.

On the other hand, within the permitted regions common to
both Figures 5 and 6, the relative side chain torsional entropy
values are fairly similar with and without the inclusion ofψ
fluctuations, indicating that, for a given (σø1, σø2) pair, similar
correlation coefficient values yield the best fit to the experi-
mental order parameters. As the true values ofσφ, σψ, andcφψ

are anticipated to lie between those used for Figures 5 and 6,
the data of these figures should provide a reliable estimate of
the corresponding relative side-chain torsional entropy.

These model calculations may be contrasted to the recent
NMR relaxation analysis of the dynamics of the solvent-exposed
phenylalanine residues of the cyclic peptide antamanide.77 In
that study, the authors analyze the side-chain dynamics assuming
a rigid peptide backbone. As explicitly verified by Monte Carlo
simulations, under this assumption the order parameter of the
aromatic Cδ can never be higher than that of Câ. The assumption
of independent main-chain and side-chain dynamics is clearly
inappropriate for the case of the structurally buried side chain.
As discussed in more detail in section IV, the assumption of
independent main-chain and side-chain dynamics appears to also
be inappropriate, even in the case of highly solvated mobile
side chains.

The side-chain dynamics of buried leucine residues provide
a more demanding test for whether observed relaxation order
parameters are consistent with fluctuations within a single
rotameric state. Earlier relaxation studies1,24 have interpreted
the low and variable order parameters of the methyl rotation
axes as indicative of large-scale internal dynamics, inconsistent
with range of motion commonly inferred from analysis of X-ray
Debye-Waller factors. A physically plausible mechanism of
generating low order parameters for the leucine methyl rotation
axes is illustrated in Figure 7. The two rotamers (-60,180) and
(180,60) constitute 88% of all leucine rotamers observed in high-
resolution X-ray structures.73 These two rotamer states are
related to each other by a pseudomirror through the plane
defined by HR-CR-Câ. Dynamical interchange between these
two rotamer states could potentially offer an efficient relaxation
mechanism with a relatively modest rearrangement of the protein
interior. Arguments based on molecular dynamics simulations
have recently been used to rationalize the low leucine methyl
axis order parameters of barstar in terms of such a rotamer
transition.79 The analysis of correlated torsional fluctuations
described herein provides a means of determining whether
fluctuations within a rotamer well are sufficient to rationalize
the observed relaxation data, or whether a more extensive
reorientation, such as that illustrated in Figure 7, must be
invoked. This relaxation analysis provides a complement to spin-
coupling studies80-83 for characterizing heterogeneity in the
torsional angle averaging.

The R-helical residue Leu 99 ofE. coli thioredoxin offers a
useful illustration of the present procedure, as the 0.37 order
parameter of thepro-Rmethyl rotation axis is nearly the lowest
for the 13 leucines of this protein, while the 0.63 order parameter
of thepro-Smethyl rotation axis represents the largest disparity
between such intraresidue geminal order parameters. Given the
mean (ø1,ø2) values of (-178,53) of thisR-helical residue,36 it
is anticipated thatφ-side-chain correlations will again dominate
the torsional dynamics due to the crankshaft-like orientation of
the φ andø2 rotation vectors.

Monte Carlo simulations were carried out assuming not only
the expected correlatedφ-side-chain fluctuation case, but also

(79) Wong, K. B.; Daggett, V.Biochemistry1998, 37, 11182.
(80) Vuister, G. W.; Yamazaki, T.; Torchia, D. A.; Bax, A.J. Biomol.

NMR 1993, 3, 297.
(81) Kariminejad, Y.; Schmidt, J. M.; Ruterjans, H.; Schwalbe, H.;

Griesinger, C.Biochemistry1994, 33, 5481.
(82) Kay, L. E.; Muhandiram, D. R.; Farrow, N. A.; Aubin, Y.; Forman-

Kay, J. D.Biochemistry1996, 35, 361.
(83) Konrat, R.; Muhandiram, D. R.; Farrow, N. A.; Kay, L. E.J. Biomol.

NMR 1997, 9, 409.

Figure 6. Side-chain torsional dynamics ofE. coli thioredoxin Phe
12 assuming correlated fluctuations for (φ,ø1) and (φ,ø2) in which the
φ and ψ fluctuations have equalσ values of 13°, with cφψ of -0.5
(predicts CR S2 of 0.82). Panels A and B illustrate the magnitude of
uncorrelatedø1 andø2 fluctuations, respectively, as a function of the
total torsional fluctuationsσø1 and σø2. Panels C and D illustrate the
quasiharmonic relative side-chain torsional entropy and side-chain
heavy-atom rmsd as calculated for Figure 5.

Figure 7. Illustration of the two most common leucine rotamers which
are related to each other by a pseudomirror through the plane defined
by HR-CR-Câ.
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correlatedψ-side-chain and correlated (φ,ψ)-side-chain tor-
sional fluctuations. The most favorable combination of correlated
ψ-side-chain fluctuations fails to predict the observed order
parameters with aø2 probability well in excess of 0.99,
consistent with the expected incompatibility of the gauche
orientations of theψ and ø2 rotation axes. The relative side-
chain torsional entropy and side-chain heavy-atom rmsd are
illustrated in panels C and D of Figure 8 for the correlated
φ-side chain fluctuations. The occurrence of physically plau-
sible values for both the side-chain configurational entropy and
side-chain heavy-atom rmsd, which predict order parameters
consistent with the observed values, demonstrate that fluctua-
tions in a single rotamer state are sufficient to explain the
experimental data.

The plots for the correlated (φ,ψ) fluctuations with acφψ value
of -0.5 are qualitatively similar to those of Figure 8, with the
boundary moved up 1-2° for each dihedral angle and the
corresponding side-chain heavy-atom rmsd values increased
approximately 0.1 Å. Hence, in this example as well, it appears
that the fluctuations of the main-chain rotation axis that is gauche
to the ø2 rotation axis will be somewhat attenuated by the
presence of the sterically hindered side chain.

In the relaxation analysis of ubiquitin, it was noted that the
leucine methyl axis order parameter values were higher for the
pro-R methyl in most all cases.24 This pattern is opposite of
that observed for Leu 99 ofE. coli thioredoxin. An explanation
can be found in the fact that the majority of such leucine residues
in ubiquitin have mean (ø1,ø2) values of (-60,180), the most
common leucine rotamer. Since as noted above, the two rotamers
are related to each other by a pseudomirror, the calculations
for the (180,60) rotamer given above apply directly to the (-60,
180) rotamer with the reversal ofφ andψ as well aspro-Rand
pro-S methyls. When the full range of physically plausible
leucine side-chain fluctuations in a single rotamer state are

examined, except for a few instances of high order parameters
and high correlation coefficients, the methyl rotation axis having
the lowest order parameter is always the one which is ap-
proximately parallel to the CR-Câ bond vector. As a result, all
main-chain fluctuations which alter the CR-Câ bond vector
orientation will likewise alter the orientation of that methyl
rotation axis. In contrast, the geminal methyl rotation axis is
approximately perpendicular to the CR-Câ bond vector. Hence,
main-chain fluctuations which alter the CR-Câ bond vector
orientation in the direction perpendicular to that geminal methyl
rotation axis will have no relaxation effect along that axis, thus
resulting in a higher order parameter for this methyl rotation
axis. This analysis highlights the fact that configurational entropy
estimates cannot be reliably based on the orientational distribu-
tion of the H-X bond vector alone. The geometric relationship
between the H-X bond vector and the axis characteristic of
the underlying conformational fluctuation must be accounted
for.

It should be emphasized that only the differences in relative
side-chain torsional entropy derived from eq 8 are physically
meaningful. As uncorrelated leucine (σø1,σø2) fluctuations of
(18°,18°) predict a relative torsional entropy value of 5.8kB, the
estimated value of 4.9kB for Leu 99 corresponds to a free energy
loss of 0.55 kcal/mol compared to unconstrained motion in a
single rotamer state.

IVA. Conformational Entropy Arising from Rotamer
State Exchange

In the effort to assess the contribution of side-chain dynamics
to the entropy of protein folding, the configurational entropy
of the unfolded state is commonly represented in terms of a set
of disjoint multidimensional harmonic wells separated by
activation barriers significantly abovekBT. In such a model,
the total configurational entropy can be written as84

whereωi is the probability for a given conformation andSi
ν is

the vibrational entropy of that state. When applied to estimating
the entropy of folding, it has often been assumed that the
vibrational entropy of the individual wells is the same for both
the folded and unfolded states, so that the entropy change only
reflects the decrease in the number of accessible conformations
in the folded state. This assumption generates predictions of
total entropy changes that approximate those estimated from
experimental data.85 However, for a detailed understanding of
the entropy changes, variations in the individual rotamer
entropies must be considered. Neglect of these effects implies
the neglect of extensive correlated dynamics which are imposed
by the formation of a defined tertiary structure. Conversely, since
the absolute magnitude of the vibrational entropy term of eq
10 is approximately 10-fold greater than that of the conforma-
tional sampling term,84 naive interpretation of the fixed coor-
dinates derived from protein crystallographic analysis implies
an entropy loss upon folding which would totally preclude a
thermodynamically stable tertiary structure.

In a similar manner, settingN ) 1 for the number of native
conformations in the second term of eq 10 likewise misrepre-
sents the configurational entropy of folding. On the other hand,
obtaining a reliable estimate for the conformational exchange
entropy term of this equation for the native state is not

(84) Karplus, M.; Ichiye, T.; Pettitt, B. M.Biophys. J.1987, 52, 1083.
(85) Doig, A. J.; Sternberg, M. J. E.Protein Sci.1995, 4, 2247.

Figure 8. Side-chain torsional dynamics ofE. coli thioredoxin Leu
99 assuming correlated fluctuations for (φ,ø1) and (φ,ø2) in which the
φ fluctuations have aσφ of 10° (predicts CR S2 of 0.93) andψ is fixed.
Panels A and B illustrate the magnitude of the uncorrelatedø1 andø2

fluctuations, respectively, as a function of the total side-chain torsion
fluctuations. Panels C and D illustrate the quasiharmonic relative side-
chain torsional entropy and side-chain heavy-atom rmsd as calculated
for Figure 5.

Sconf ) ∑
i)1

N

ωi Si
ν - kB∑

i)1

N

ωi ln ωi (10)
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straightforward. However, as illustrated below for the case of
mobile solvent-exposed side chains, NMR relaxation data can
provide a reasonably robust estimate of the rotamer exchange
entropy of individual side chains.

The earliest NMR analyses of rotamer exchange dynamics
assumed that torsion angle rotations were uncorrelated.86

Subsequently, lattice jump models were proposed which incor-
porated correlated transitions.49,87 The early assumption that
small amplitude rapid (picosecond) fluctuations make a negli-
gible contribution to macromolecular relaxation has been
disproven by molecular dynamics simulations.47 On the other
hand, explicit consideration of both rotamer jumps and torsion
angle fluctuations substantially increases the complexity of the
model needed to fit a limited experimental data set. Some
simplification can be achieved by assuming the dynamic
independence of the rotamer jumps and the torsion angle
fluctuations.88

The present study offers several advantages regarding analysis
of rotamer exchange transitions. The analysis of the fast limit
and generalized order parameters via an arbitrary multiexpo-
nential representation of the autocorrelation function does not
assume the separability of the contributions due to rotamer jumps
vs torsion angle fluctuations. Indeed, separability of the
contributions due to fluctuations within disjoint multidimen-
sional potential wells and transitions between these wells need
not be generally valid for polymer dynamics.89 The frequency
partitioning provided by theS2 andSf

2 analysis allows for an
experimental testing of separability based on the differences in
time scales characteristic of the side-chain torsional fluctuations
and the rotamer transitions. Furthermore, by focusing on
extraction of the relevant order parameter data, estimations of
the associated entropy contributions are obtained in a straight-
forward manner.

The 3-fold torsional potential which occurs at vicinal sp3-
sp3 positions gives rise to a rotamer exchange conformational
entropy equation of

where pi is the population of theith rotamer. Assuming
tetrahedral geometry, the order parameter arising purely from
the corresponding rotamer exchange is given by

where for methyl rotation the equivalence of the rotamer
populations yields the familar value of 0.111. It has been
suggested that methyl groups slightly deviate from tetrahedral
geometry,90 so as to yield a limit order parameter of∼0.100.91

The corresponding change from 8/3 to 2.7 in eq 12 has a
negligible effect on the present analysis. As illustrated in Figure
9, the mapping of all possible values of (p1p2 + p1p3 + p2p3)
onto-(p1 ln p1 + p2 ln p2 + p3 ln p3) yields a reasonably narrow
distribution. The upper boundary corresponds to the condition
p1 > p2 ) p3. The lower left-hand boundary representsp1 > p2

with p3 ) 0, while the lower right-hand boundary corresponds
to p1 ) p2 > p3. As explicitly verified, all other combinations

of p1, p2, andp3 lie within these boundaries. By utilizing the
median values of this distribution, the largest possible error in
the rotamer exchange entropy estimate derived from (p1p2 +
p1p3 + p2p3) is 0.08kB at the (p1p2 + p1p3 + p2p3) value of
0.25. In most cases, the anticipated error is appreciably smaller.
Model studies have suggested that the quasiharmonic ap-
proximation for configurational entropy estimates of individual
rotamers have errors in the range of 0.05kB.71 When combined
with the uncertainties in the experimental order parameter
determinations, the imprecision in the mapping of experimental
(p1p2 + p1p3 + p2p3) values onto the rotamer exchange entropy
estimates is unlikely to substantially affect the overall accuracy
of the differential entropy calculations.

The foregoing analysis of conformational entropy estimates
based on relaxation effects assumes that a thermodynamic
quantity can be estimated from dynamical data with an upper
time constant boundary of a few nanoseconds. The ergodic
hypothesis ensures that the experimental data will reflect a
proper population weighting of the various protein conforma-
tions. By construction, the dynamical processes analogous to
the vibrational term of eq 10 lack free energy activation barriers
that are large compared to thermal energy. Hence, satisfactory
entropic sampling within these potential wells can be expected
to occur faster than the time frame of the relaxation experiment.
Furthermore, the entropic averaging for rapid configurational
transitions will likewise be completed in this time frame.
However, the relaxation experiment is insensitive to configu-
rational transition terms having time constants longer than a
few nanoseconds. The presence of such slow transitions implies
that the corresponding order parameter would be overestimated
in the experiment, resulting in a systematic underestimate of
the configurational entropy. For transitions involving rotamer
exchanges, the existence of entropically significant slow pro-
cesses can be tested by comparison between the (p1p2 + p1p3

+ p2p3) values derived from the relaxation experiment and scalar
coupling data which sample the rotamer populations in a much
slower time regime.

IVB. Torsional Fluctuations and Rotamer Transitions in
the Highly Solvated Side Chains ofE. coli Thioredoxin

Operationally, the fast limit motional processes that give rise
to Sf

2 can be distinguished from the slower internal motions

(86) Wallach, D. J.J. Chem. Phys.1967, 47, 5258.
(87) London, R. E.; Avitabile, J.J. Am. Chem. Soc.1977, 99, 7765.
(88) Batie, R. D. d. l.; Laupretre, F.; Monnerie, L.Macromolecules1988,

21, 2045.
(89) Helfand, E.J. Chem. Phys.1978, 69, 1010.
(90) Koetzle, T. F.; Golic, L.; Lehmann, M. S.; Verbist, J. J.; Hamilton,

W. C. J. Chem. Phys.1974, 60, 4690.
(91) Chatfield, D. C.; Szabo, A.; Brooks, B. R.J. Am. Chem. Soc.1998,

120, 5301.

Figure 9. Torsional configurational entropy (kB) estimated from
relaxation order parameter analysis. For a 3-fold torsional potential,
the order parameter for the jump process is proportional to (p1p2 +
p1p3 + p2p3). For all combinations of rotamer populationsp1, p2, and
p3, the predicted torsional configurational entropy lies within the
illustrated curve.

Srot ) -kB(p1 ln p1 + p2 ln p2 + p3 ln p3) (11)

S2 ) 1 - 8/3(p1p2 + p1p3 + p2p3) (12)

Protein Side-Chain Dynamics by NMR J. Am. Chem. Soc., Vol. 121, No. 8, 19991739



which contribute to additional observed relaxation effects.
Perhaps the simplest nontrivial case of interpreting these
relaxation effects in terms of specific motional models is that
of the highly solvated side chains. In Table 1 are listed the CR

and Câ order parameters of the 10 polarE. coli thioredoxin side
chains for which the CR S2 is greater than 0.8, the Câ atoms
have solvent accessible surface areas of greater than 5 Å2, and
there are no side-chain-main-chain (direct or water-mediated)
hydrogen bonds as reported in the X-ray analysis.36 It should
be noted that the NMR relaxation studies and the X-ray
structural analysis were carried out under quite similar pH and
ionic strength conditions, and an excellent correspondence
between surface side-chain hydrogen bonding and elevated order
parameters has been previously reported.4 The similarity of the
CR S2 andSf

2 values in Table 1 indicates no significant internal
rotational reorientation dynamics of these main-chain positions
in the time frame of the Larmor frequencies. As a result, it is
concluded that the marked decrease in the Câ S2 values as
compared to the correspondingSf

2 values observed for most of
these side chains can be analyzed in terms of the local side-
chain dynamics.

For each of these 10 side chains, the predicted dominant time
constant is substantially longer than that of the high-frequency
partition boundary 4ωH+C. This result indicates the plausibility
of interpretingSf

2 in terms of fluctuations within a rotamer well
and interpreting (Sf

2 - S2) in terms of transitions between
rotamer wells. If the fluctuations within a rotamer well are
unimpeded by additional intramolecular interactions, the local
torsional potential should impose an approximately Gaussian
torsional fluctuation with an rmsd of near 18°.

In the analysis of the buried side-chain dynamics described
above, the predicted order parameters were examined as a
function of the main-chain and side-chain fluctuations and
correlation coefficients. Despite the recognition that restricted
side-chain motion provides the basis for the correlated torsional
fluctuations, the side-chain heavy-atom rmsd values arose as a
prediction rather than as an input parameter to the optimization.
In an analogous fashion, the magnitude of theø1 fluctuations
of the solvent-exposed non-hydrogen-bonded polar side chains
can be viewed as a predicted parameter, with the expectation
that the optimal value should reflect the local torsional potential.

For the 10 mobile side chains of Table 1, the predictedø2 fit
to the CR and Câ order parameters as a function of the torsional
fluctuations σø1 and the main-chain-side-chain correlation
coefficients are illustrated in Figure 10. For each value ofσø1

and correlation coefficients, the values ofσφ andσψ (assumed
to be equal) were varied independently for each side chain so
as to obtain the minimumø2 residual summed over the
population of the 10 residues. In all cases, the predicted optimal
σø1 value is rather precisely determined. When no main-chain
or side-chain correlation is assumed, the fit is poor, and theσø1

optimum is smaller than expected. As the solvent interactions
can be expected to impose a dynamic drag on the torsional
fluctuations of the Cγ atoms, the effects of correlation were
examined forø1 and the main-chain rotation axis, forming a
crankshaft orientation relative to the Câ-Cγ bond. Although
the effects of this correlation on the predictedø2 residuals are
modest, theσø1 optimum is highly sensitive to this correlation.

Quite the opposite effect arises from the assumption of main-
chain (φ,ψ) correlation. A modest level of (φ,ψ) correlation (i.e.,
-0.5) significantly decreases the predictedø2 residual but shifts
the ø1 optimum to a smaller angle. When acφ,ψ of -0.5 is
combined with a weak main-chain-ø1 correlation (i.e., 0.25),
both theø2 residuals and theσø1 optimum are substantially
superior to those predicted from the uncorrelated fluctuations.
It should be noted that both of these correlation coefficients
match well with those estimated from molecular dynamics
simulations.74,75Since Glu 62 and Asn 83 contributed substan-
tially to the ø2 residual calculations, the calculations were
repeated with those residues removed. The correlation depen-
dence of theø2 residuals was unchanged, and in no case did
the predictedσø1 optimum differ from that of Figure 10 by more
than 0.25°.

For half of the Câ values listed in Table 1, the relaxation
data for both1Hâ-13Câ vectors were obtained, and the order
parameter predictions of Figure 10 utilized all 15 individual
values. However, in no case did the geminal order parameters
differ by more than the average estimated accuracy of 0.034
(the combination of both experimental and multiexponential
analysis model precision). The similarity of the observed
geminal order parameters, which was previously noted to be
common throughout the protein structure,4 provides additional
insight into the presence of correlated motion.

Table 1. Order Parameters and Rotamer Exchange Entropies for
Solvent-Exposed Non-Hydrogen-Bonded Polar Side Chains ofE.
coli Thioredoxin

residue CR Sf
2 CR S2 Câ Sf

2 Câ S2 ∑pipj entropy (kB)

Asp 13 0.88 0.86 0.72 0.20 0.28 (0.88,0.94)
Lys 18 0.91 0.90 0.80 0.67 0.04 (0.18,0.21)
Glu 30 0.84 0.84 0.69 0.28 0.23 (0.65,0.81)
Glu 48 0.84 0.83 0.73 0.27 0.24 (0.67,0.83)
Gln 50 0.83 0.80 0.69 0.21 0.27 (0.85,0.92)
Gln 62 0.87 0.87 0.78 0.59 0.08 (0.29,0.35)
Lys 69 0.92 0.91 0.75 0.43 0.17 (0.52,0.64)
Asn 83 0.94 0.90 0.69 0.32 0.22 (0.64,0.79)
Lys 100 0.84 0.80 0.71 0.36 0.18 (0.56,0.68)
Glu 101 0.88 0.86 0.72 0.26 0.25 (0.69,0.86)

Figure 10. Prediction of the CR and Câ Sf
2 values for the solvent-

exposed side chains of Table 1 as a function ofø1 and mainchain
torsional fluctuations (σφ ) σψ) and correlation coefficients. For a fixed
set of σø1 and correlation coefficients, the main-chain torsional
fluctuations were adjusted for each residue so as to minimize the
aggregateø2 residual summed over the 10 residues. Assuming no
torsional correlation (b) yields the highestø2 residual. Introduction of
weak (0.25 (2)) and modest (0.50 ([)) main-chain-ø1 correlations
has little effect on theø2 residual but substantially increases theσø1

optimum. Introduction of main-chainφ-ψ correlation (-0.5 (×))
significantly decreases theø2 residual but shifts theσø1 optimum away
from the expected 18°. The combination of modest main-chainφ-ψ
correlation (-0.5) and weak main-chain-ø1 correlation (0.25) (9),
consistent with reported correlation coefficients derived from molecular
dynamics74,75 provides a favorable combination of a lowerø2 residual
near the expectedσø1 optimum.
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Torsional fluctuations around the main-chain rotation axis
parallel to the Câ-Cγ bond can have no differential effect on
the geminal1Hâ-13Câ order parameters. Correlation between
this main-chain fluctuation andø1 fluctuation does not alter the
absence of a differential effect. In contrast, torsional fluctuations
about the other main-chain rotation axis can have a marked
differential effect, as the1Hâ-13Câ bond vector parallel to this
main-chain rotation axis is largely insensitive to its torsional
fluctuations. However, the near equivalence of the1Hâ-13Câ

order parameters can be achieved by only modest correlation
between fluctuations of this main-chain torsional angle andø1.
For aσø1 value of 18° and a CR S2 value of 0.85, uncorrelated
(φ,ψ,ø1) fluctuations predict a differential1Hâ-13Câ order
parameter of 0.059. Introduction of crankshaft-like correlations
decreases this difference only modestly. Acφ,ψ value of-0.5
decreases the differential1Hâ-13Câ order parameter to 0.038,
while combination of this (φ,ψ) correlation with a modest main-
chain-ø1 correlation of 0.25 further decreases the predicted
differential1Hâ-13Câ order parameter to 0.023, below the level
reliably detected with the quality of the present relaxation data.
It should be noted that Kay and co-workers have reported that
a modest fraction of the side-chain methylene positions of the
N-terminal SH3 domain of drk do exhibit nonequivalence in
the geminal order parameters.6

The foregoing analysis suggests that the assumption of
independent main-chain and side-chain fluctuations may be
unfounded, even in the case where interresidue interactions are
not directly imposing correlated motion. Furthermore, this
analysis supports the plausibility of interpreting the Câ Sf

2 values
of the highly solvated non-hydrogen-bonded side chains in terms
of torsional fluctuations within a given rotamer state. As
discussed in section IIIA, evidence that transitions betweenø1

rotamer wells generally do not significantly contribute to the
estimated Câ Sf

2 values is drawn from the lower bound of the
order parameters estimated from fluctuations within a single
rotamer state. Assuming the optimum from Figure 10 for the
case of acφ,ψ of -0.5 and a main-chain-ø1 correlation of 0.25,
for a CR S2 of 0.80, the predicted Câ S2 is 0.68, which is within
experimental error of the lowest experimental non-proline,
nonterminal Câ Sf

2 value. Extending this analysis to theø2

dihedral angle, superimposing an 18° Gaussian fluctuation of
ø2 upon the same set of single rotamer main-chain and side-
chain fluctuations predicts a Cγ S2 value of 0.52 for a CR S2

value of 0.80. This compares quite favorably with the lowest
non-proline Cγ Sf

2 value of 0.50 in the protein.
The suggestion that, in general, methine and methyleneSf

2

values do not manifest the dynamics of rotamer transitions gains
further plausibility from the data of Figure 2. Although these
experimental data quite effectively fill much of the contour
which defines the range of relaxation values consistent with an
arbitrary multiexponential autocorrelation function, the lower
right-hand region is notably empty. This region represents
motions with amplitudes larger than fluctuations in a single
rotamer well with apparent time constants that are rapid
compared to 1/ωH+C. In fact, the relaxation data for the majority
of the methyl resonances lie within this blank region of Figure
2, thus demonstrating that the full range of the multiexponential
autocorrelation function contour is physically accessible. In
contrast to the methyl rotation dynamics, for which transition
times of∼50 ps are predicted,65 side-chain rotamer transitions
in proteins involving heavy-atom movement are significantly
slower.

For the 10 solvent-exposed residues listed in Table 1, the Câ

Sf
2 values appear explicable in terms of correlated fluctuations

within a rotamer well. Given that only fast limit motion is
apparent for the corresponding CR positions, the Câ S2 values
should be explicable in terms of rotamer exchange transitions.
In the case of arbitrarily narrow rotamer wells, the order
parameter for the rotamer transitions is proportional to (p1p2 +
p1p3 + p2p3). For the two- and three-rotamer jump conditions
defining the boundary limits of Figure 9, it was explicitly
verified that transitions between rotamer wells with widths of
18° rmsd likewise predict an order parameter which depends
only on (p1p2 + p1p3 + p2p3). Furthermore, it is found that, to
a good approximation the Câ (S2/Sf

2) value provides a reliable
estimate for determining (p1p2 + p1p3 + p2p3) from eq 12,
although due to the collinearity of the fast limit and rotamer
transition rotation axes this relationship cannot be rigorously
correct.

In Table 1 are listed the (p1p2 + p1p3 + p2p3) values
determined for each of the 10 residues along with the corre-
sponding extrema values for the rotamer exchange entropies as
derived in Figure 9. The maximum range of entropy values
(0.17kB for Glu 101) corresponds to less than 0.1 kcal/mol in
free energy at room temperature. The range of possible rotamer
exchange entropy values can be further reduced by considering
independent information on rotamer populations derived from
scalar coupling analysis or from measurement of dipole-dipole
cross correlation effects.38,92When differential torsional entropy
comparisons are made to the totally unhindered rotamer
exchange, as might be assumed for the unfolded state of a
protein, the reference (p1p2 + p1p3 + p2p3) value will not be
1/3 as predicted for equal rotamer populations. Typical estima-
tions of theø1 rotamer populations of (0.50,0.35,0.15) forø1

values of (-60°,180°,60°) yield a (p1p2 + p1p3 + p2p3) value
of 0.30.

The capability of estimating the torsional entropy arising from
fluctuations in a rotamer well combined with the capability of
estimating the entropy arising from rotamer exchange transitions
indicates that it should be increasingly feasible to experimentally
ascertain the net contribution of side-chain immobilization to
the overall entropy of protein folding.

V. Conclusions

Using a multiexponential autocorrelation function representa-
tion for estimation ofS2 andSf

2, the present analysis demon-
strates the utility of relaxation data in determining correlated
side-chain fluctuations and the resultant torsional configurational
entropy effects. The analysis suggests that, for the case of large
buried side chains, the correlated main-chain-side-chain tor-
sional fluctuations results in the attenuation of the main-chain
torsional fluctuations gauche to the Câ-Cγ bond. Furthermore,
low order parameters for leucine methyl rotation axes can be
consistent with fluctuations within a single rotamer state. The
marked difference between the order parameters of geminal
leucine methyl rotation axes demonstrates the necessity of
considering distal torsion angle fluctuations. Analogous con-
siderations have motivated the analysis of internal restricted
correlated rotations reported by Daragan and Mayo,74,92although
their recent analysis of protein side-chain dynamics,93 which
assumes that distal side-chain atoms do not influence the motions
of H-C bonds closer to the backbone, is inconsistent with the
conclusions of the present study.

The configurational entropy of motionally restricted positions
cannot be satisfactorily rationalized using local H-X bond

(92) Daragan, V. A.; Mayo, K. H.Prog. Nucl. Magn. Reson. Spectrosc.
1997, 31, 63.

(93) Daragan, V. A.; Mayo, K. H.J. Magn. Reson.1998, 130, 329.
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reorientation models. Attempts to estimate configurational
entropy using local H-X bond reorientation models have arisen
primarily as a result of the sparseness of the monitored sites
for the majority of protein relaxation studies. The demonstration
of substantial correlation of torsional fluctuations presented
herein clearly indicates that reliable experimental estimates of
configurational entropies necessitate a more extensive dynamical
mapping of the relaxation behavior throughout the protein
structure, as offered by the alternate carbon enrichment approach
used here.4 2H relaxation autocorrelation analysis3,6 and/or
dipole-dipole cross correlation studies6,38,92 will likely prove
to be of considerable use in analysis of correlated protein side-
chain dynamics, although the inability to obtain frequency
partitioning of the order parameter contributions via these
experiments may represent a significant limitation in practice.

The success in rationalizing a significant fraction of the
observed relaxation data in terms of comparatively localized
torsional motion should not be construed as an argument for
only such modes of motion being present in the protein
molecule. In particular, finding predicted side-chain heavy-atom
rmsd values consistent with X-ray Debye-Waller factors does
not imply that the local torsional motion constitutes the total
atom mobilities. As demonstrated in early molecular dynamics
simulations of cytochromec,94 superimposed on the more rapid
torsional oscillations are often slower concerted motions which,
on the length scale of the residue, appear primarily as
translational disorder. Pure internal translational motion is
transparent to these relaxation experiments. Segmental transla-
tions appear to account for a substantial fraction of the

nonharmonic components of protein dynamics.95 For most of
the H-X bond vectors involved in such segmental transitions,
the relaxation effects are likely negligible. However, the shifts
in the relative orientation for theR-helices of myoglobin seen
by molecular dynamics simulations were accompanied by side-
chain rearrangements so as to preserve the close packing of the
protein interior.95 If NMR relaxation analysis is to effectively
quantitate contributions from such larger scale cooperative
transitions, it will be essential to first optimize the ability to
quantitate the relaxation contributions from the generally more
rapid localized dynamics. It is anticipated that the capability of
determining both the fast limit and generalized order parameters
will prove critical for reliably distinguishing the relaxation
contributions from localized vs larger scale cooperative motions.

Despite the wide range of conformational dynamics which
can be represented in terms of a multiexponential autocorrelation
function, the range of relaxation parameters consistent with such
an autocorrelation function is clearly delineated. Experimental
data which fall significantly outside of these bounds, which
cannot be explained by chemical exchange broadening unam-
biguously indicate a failure of either the data collection or the
dynamics analysis. As the described order parameter analysis
depends on only the operational separability of the relaxation
due to global tumbling and the validity of the multiexponential
autocorrelation function as embodied in eq 7, it comes rather
close to deserving the appellation “model-free”.
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